Package: beastt 0.0.3

Christina Fillmore

beastt: Bayesian Evaluation, Analysis, and Simulation Software Tools for Trials

Bayesian dynamic borrowing with covariate adjustment via inverse probability weighting for simulations and data analyses in clinical trials. This makes it easy to use propensity score methods to balance covariate distributions between external and internal data.

Authors:Christina Fillmore [aut, cre], Ben Arancibia [aut], Nate Bean [aut], Abi Terry [aut], GlaxoSmithKline Research & Development Limited [cph, fnd], Trustees of Columbia University [cph]

beastt_0.0.3.tar.gz
beastt_0.0.3.zip(r-4.5)beastt_0.0.3.zip(r-4.4)beastt_0.0.3.zip(r-4.3)
beastt_0.0.3.tgz(r-4.5-x86_64)beastt_0.0.3.tgz(r-4.5-arm64)beastt_0.0.3.tgz(r-4.4-x86_64)beastt_0.0.3.tgz(r-4.4-arm64)beastt_0.0.3.tgz(r-4.3-x86_64)beastt_0.0.3.tgz(r-4.3-arm64)
beastt_0.0.3.tar.gz(r-4.5-noble)beastt_0.0.3.tar.gz(r-4.4-noble)
beastt.pdf |beastt.html
beastt/json (API)
NEWS

# Install 'beastt' in R:
install.packages('beastt', repos = c('https://gsk-biostatistics.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/gsk-biostatistics/beastt/issues

Pkgdown site:https://gsk-biostatistics.github.io

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:
  • ex_binary_df - External Binary Control Data for Propensity Score Balancing
  • ex_norm_df - External Normal Control Data for Propensity Score Balancing
  • ex_tte_df - External Time-to-Event Control Data for Propensity Score Balancing
  • int_binary_df - Internal Binary Data for Propensity Score Balancing
  • int_norm_df - Internal Normal Data for Propensity Score Balancing
  • int_tte_df - Internal Time-to-Event Control Data for Propensity Score Balancing

On CRAN:

Conda:

cpp

6.67 score 3 stars 4 scripts 293 downloads 24 exports 102 dependencies

Last updated 19 hours agofrom:d1b9c95ade. Checks:1 OK, 11 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 31 2025
R-4.5-win-x86_64NOTEMar 31 2025
R-4.5-mac-x86_64NOTEMar 31 2025
R-4.5-mac-aarch64NOTEMar 31 2025
R-4.5-linux-x86_64NOTEMar 31 2025
R-4.4-win-x86_64NOTEMar 31 2025
R-4.4-mac-x86_64NOTEMar 31 2025
R-4.4-mac-aarch64NOTEMar 31 2025
R-4.4-linux-x86_64NOTEMar 31 2025
R-4.3-win-x86_64NOTEMar 31 2025
R-4.3-mac-x86_64NOTEMar 31 2025
R-4.3-mac-aarch64NOTEMar 31 2025

Exports:bootstrap_covcalc_cond_binarycalc_post_betacalc_post_normcalc_post_weibullcalc_power_prior_betacalc_power_prior_normcalc_power_prior_weibullcalc_prop_scrglanceinv_logitis_prop_scrmix_meansmix_sigmasplot_distprop_scr_cloudprop_scr_densprop_scr_histprop_scr_loverescalerobustify_mvnormrobustify_normtidytrim

Dependencies:abindaskpassbackportsbase64encBHbslibcachemcallrcheckmatechkclicobaltcolorspacecpp11crayoncrosstalkcurldata.tabledescdigestdistributionaldplyrevaluatefansifarverfastmapfontawesomefsgenericsggdistggplot2gluegridExtragtablehighrhtmltoolshtmlwidgetshttrinlineisobandjquerylibjsonlitekernlabknitrlabelinglaterlatticelazyevallifecycleloomagrittrMASSMatrixmatrixStatsmemoisemgcvmimemixtoolsmunsellnlmenumDerivopensslpillarpkgbuildpkgconfigplotlyposteriorprocessxpromisespspurrrquadprogQuickJSRR6rappdirsRColorBrewerRcppRcppEigenRcppParallelrlangrmarkdownrstanrstantoolssassscalessegmentedStanHeadersstringistringrsurvivalsystensorAtibbletidyrtidyselecttinytexutf8vctrsviridisLitewithrxfunyaml

Binary Outcome

Rendered frombinary.Rmdusingknitr::rmarkdownon Mar 31 2025.

Last update: 2024-12-17
Started: 2024-06-14

Normal Outcome (Known SD)

Rendered fromcontinuous.Rmdusingknitr::rmarkdownon Mar 31 2025.

Last update: 2025-01-24
Started: 2024-02-08

Time-to-Event Outcome

Rendered fromtte.Rmdusingknitr::rmarkdownon Mar 31 2025.

Last update: 2025-01-24
Started: 2024-12-10

Readme and manuals

Help Manual

Help pageTopics
The 'beastt' package.beastt-package beastt
Bootstrap Covariate Databootstrap_cov
Calculate Conditional Drift and Treatment Effect for Binary Outcome Modelscalc_cond_binary
Calculate Posterior Betacalc_post_beta
Calculate Posterior Normalcalc_post_norm
Calculate Posterior Weibullcalc_post_weibull
Calculate Power Prior Betacalc_power_prior_beta
Calculate Power Prior Normalcalc_power_prior_norm
Calculate Power Prior Weibullcalc_power_prior_weibull
Create a Propensity Score Objectcalc_prop_scr
External Binary Control Data for Propensity Score Balancingex_binary_df
External Normal Control Data for Propensity Score Balancingex_norm_df
External Time-to-Event Control Data for Propensity Score Balancingex_tte_df
Internal Binary Data for Propensity Score Balancingint_binary_df
Internal Normal Data for Propensity Score Balancingint_norm_df
Internal Time-to-Event Control Data for Propensity Score Balancingint_tte_df
Inverse Logit Functioninv_logit
Test If Propensity Score Objectis_prop_scr
Extract Means of Mixture Componentsmix_means
Extract Standard Deviations of Mixture Componentsmix_sigmas
Plot Distributionplot_dist
Propensity Score Cloud Plotprop_scr_cloud
Density of the Propensity Score Objectprop_scr_dens
Histogram of the Propensity Score Objectprop_scr_hist
Love Plot of the Absolute Standardized Mean Differencesprop_scr_love
Rescale a 'prop_scr' objectrescale
Robustify Multivariate Normal Distributionsrobustify_mvnorm
Robustify Normal Distributionsrobustify_norm
Tidy a(n) prop_scr objecttidy.prop_scr
Trim a 'prop_scr' objecttrim